
© Semiconductor Components Industries, LLC, 2009

February, 2009 − Rev. 0
1 Publication Order Number:

AND8384/D

AND8384/D

Using Block Floating-Point
in the WOLA Filterbank
Coprocessor

This application note is applicable to Toccata Plus™,
BelaSigna® 200 and Orela® 4500 Series

INTRODUCTION AND SCOPE
The WOLA filterbank coprocessor is an integral part of

Toccata Plus, BelaSigna 200 and Orela 4500 series
products. This application note describes the block
floating−point scheme used in the WOLA filterbank
coprocessor to preserve numeric precision in
time−frequency transform. It is critical to have a good
understanding of the WOLA block floating−point
mechanism to optimize and plan tradeoffs for the best
numeric precision at all processing stages as well as to avoid
saturation effects.

A brief summary of the use of the WOLA filterbank
coprocessor is described in this application note. It is
strongly recommended that the Introduction To Audio
Processing −− Using the WOLA Filterbank Coprocessor
application note be read in conjunction with this document.
This aforementioned application note provides an overview
of the features and typical usage of the IOP and the WOLA
filterbank coprocessor. It also describes the basic
considerations when selecting WOLA filterbank parameters
and compromises for specific applications. Keep in mind
that the use of the WOLA filterbank coprocessor looks very
simple, but care should be taken when considering numeric
precision.

WOLA PROGRAMMING BASICS
Before using the WOLA filterbank coprocessor, all the

filterbank parameters (R, N, La, DF, even/odd stacking,
mono/simple stereo/full stereo/digital mixed mode) have to
be defined in the initialization code sections of a signal
processing algorithm. Then, the WOLA configuration
macro (“WOLA_CONFIGURE”) is run to load all
appropriate parameters in the WOLA−related memory,
including default windows. If necessary, custom windows
can be defined and written in the window locations using
appropriate macros (“WIN_CONFIGURE”,
“UCODE_CONFIGURE”).

In the main portion of the signal processing algorithm, the
WOLA filterbank coprocessor can be called for the desired
function (analysis, gain application or synthesis) using the

WOLA_Start macro, specifying the desired function as a
parameter (0 for analysis, 1 for gain application and 2 for
synthesis). Consequently, only a “start” macro execution is
required for filterbank operations in the signal processing
code. When the filterbank operation is completed, an
interrupt is generated in the RCore processor and the results
are available in the dedicated memory locations.

In normal operation, the WOLA analysis process always
gets the input data from the input FIFO. Similarly, the
WOLA synthesis puts resulting samples in the output FIFO.
In the frequency domain, the values resulting from the
analysis are always available in a dedicated memory
location. A gain application operation will multiply those
values by the gains vector in place. The gain vector data has
to be placed in a dedicated memory location. More practical
detail and code examples can be found in the documentation
from ON Semiconductor’s evaluation and development kit
(EDK) and other relevant white papers and application
notes.

USE OF THE BLOCK FLOATING−POINT
The WOLA filterbank coprocessor is implemented in the

hardware using 18−bit block floating−point numerical
precision. This scheme allows for good precision in FFT
operations, while still avoiding the considerable
computational complexity of floating−point processing. As
with any system, it is important to be aware of the way the
numerical precision implementation works. In a WOLA
filterbank coprocessor−based system, this understanding
will help to interpret scale and skillfully manipulate digital
data between a WOLA analysis and WOLA synthesis
operation. Furthermore, when applying digital gain greater
than 1, it is also important to understand how the block
floating point works, in order to prevent saturation. The
following section explores these two important topics in
technical detail.

Relative Scale of Subband Data
It is important for an algorithm designer to understand

how the WOLA filterbank coprocessor scales the subband
data (frequency domain data between analysis and
synthesis). As a first example, the algorithm may need to
refer computations back to subband data from the prior

APPLICATION NOTE

http://onsemi.com

AND8384/D

http://onsemi.com
2

processing blocks (the need for history). The WOLA
filterbank coprocessor actually scales data optimally in each
processing block and often changes the relative scaling
between blocks to preserve numeric precision.
Consequently, when an algorithm stores and uses subband
data from the past, correct calculations will depend on
compensating for these scaling differences. As a second
example, some algorithms depend on absolute levels in
subband data. For instance, some applications may relate the
computations on subband data to sound pressure levels.
These calculations will also require compensation for the
scaling that the WOLA filterbank coprocessor applies to
each processed block.

In the RCore, data is represented as 16−bit fractional
values (between –1 and 1−2−15). Hence, the input data
passed to the WOLA filterbank coprocessor has this format
as well. However, during a standard WOLA filterbank
coprocessor operation, the internal representation uses 18
bits: 2 bits are added to the 16−bit fractional representation
to prevent saturation in case of data growth. This enables a
fractional representation with an integer part between –4 and
+3.

In fact, the analysis calculation is split into several steps
or passes (windowing and time−folding, successive FFT
butterflies, etc). During each calculation pass, the internal
precision is 18 bits in the computation unit and the resulting
data is stored in 18−bit WOLA temporary memory.
Nevertheless, at the beginning of every new pass, the 18−bit
results from the previous pass are re−scaled to 16 bits. Only
a fractional number is represented in the computation unit at
the beginning of each pass. As a consequence, 1 or 2 right
shifts may be necessary to map each 18−bit representation
to a 16−bit representation. At every pass, a register called
N_FFT holds the number of right shifts required (0, 1 or 2).
The aggregate number of right shifts is accumulated in the
block exponent register, located at address
D_BLOCK_EXP_DATA in X memory. This register is
updated at the end of each pass. After analysis, it contains the
total of all the shifts performed. The number of shifts
performed during the last pass is still available in the N_FFT
register.

The frequency−domain data are completely represented
by a two 18−bit signed mantissa per frequency band (one for
the real and one for the imaginary components) plus a global
exponent across all bands (D_BLOCK_EXP_DATA). The
allowed exponent values can go from 0 to 7 (maximum),
while its numeric format is 4 bit signed. Two methods can
be used to get the analysis results in the 16−bit representation
in a desired reference scale:

1. Subband data is available to the RCore from
16−bit memory−mapped locations starting at
D_WOLA_RESULT_BASE (X:0x1300). A read

will return the most relevant contiguous 16−bit
range from the 18−bit memory space. The data can
be normalized by a left shift by
D_BLOCK_EXP_DATA on each datum (using the
“SHIFT A, INV” instruction). Note that it is
important to ensure that the algorithm
compensates in the case where there would
normally be an overflow (advanced algorithm
design can often carry the scaling exponent as a
variable for future calculation for better overall
precision and efficiency). If the other two bits of
precision (which are very important for
intermediate calculations in the WOLA passes) are
not strictly required for algorithmic precision, this
method is strongly recommended for
computational simplicity.

2. Alternately, the full 18−bit mantissa values can be
accessed using three mirrored 16−bit registers: the
first one containing bits 0 to 15 (at address
X:0x1000 indexed from the LSB side), the second
one containing bits 1 to 16 (at address X:0x1100)
and the third one containing bits 2 to 17 (at
address X:0x1200). This is shown in . The 16−bit
data can be scaled to a known reference by reading
the exponent in the D_BLOCK_EXP_DATA
register and shifting appropriately. The content of
the D_BLOCK_EXP_DATA register will then
represent the number of left shifts to apply to the
analysis results at memory location X:0x1000
(when N_FFT = 0), at location X:0x1100 (when
N_FFT = 1) or at location X:0x1200 (when
N_FFT = 2). This method is only recommended
when extreme numeric precision is required.

When restoring the desired scale of the analysis results in
the 24−bit accumulator AE|AH, one must be careful if the
resulting data range exceeds 16 bits. Storage in 16−bit
memory can pose problems without normalizing to AH first.
One suggested strategy is to use a constant normalization
(number of right shift) before memory storage or any load
operation on the data. In that case, the global number of left
shifts applied at each frame to the data in
D_WOLA_RESULT_BASE is BLOCK_EXP – NORM
(assuming the first method above). Here, BLOCK_EXP is
the content of the register D_BLOCK_EXP_DATA
(changing at every frame), while NORM is the number of
right shifts used for normalization, keeping data as much as
possible in the 16−bit fractional range on a dynamic signal
(it is the same across all blocks). NORM should be selected
according to the global system settings (notably
amplification level at input stage). It is often determined
using experiments to trade off between saturation and
precision.

AND8384/D

http://onsemi.com
3

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [17:2]

Bits [16:1]

Bits [15:0]

D_WOLA−RESULT−BASE

N_FFT

Figure 1. 18−bit Frequency Results

In FIFO

W ana

Out FIFO

0

W syn

Figure 2. WOLA Operations (Analysis, Gain Application and Synthesis)

FFT iFFT

Gain Re−mapping to 16−bits

18−bit Block Floating Point 16−bit Fixed Point

Preventing Saturation During Gain Application and
Synthesis

The block floating−point scheme is used during gain
application (the gain application is one WOLA pass) and
synthesis (many passes). The D_BLOCK_EXP_DATA
register continues to accumulate the number of right shifts

in each pass. The block floating−point mechanism stops just
after the IFFT in the synthesis step when the data is forced
back to 16 bits. The subsequent operations (synthesis
windowing and overlap−add) all use 16−bit fixed−point
data. This is shown in , which illustrates the full WOLA
process from analysis to synthesis. After synthesis, the

AND8384/D

http://onsemi.com
4

time−domain samples available in the output FIFO always
have a constant scale, so there is no longer a concern about
the relative representation of data.

To remap the 18−bit representation to 16 bits, the mantissa
is left−shifted by the final content of
D_BLOCK_EXP_DATA to restore the appropriate scale.
The FFT/IFFT normalization operation (division by the
number of actual FFT points) is taken into account as right
shifts, involving FFT_NORM bits. Because the FFTs used
in the WOLA implementation are complex, FFT_NORM is
equal to log2(N/2) bits in mono mode and log2(N) bits in
stereo modes. A mathematical representation of the shift
factor to restore 16−bit scale after WOLA filterbank
coprocessor processing is represented by:

RSH � FFT_NORM � BLOCK_EXP [bits]

where: BLOCK_EXP is the content of
D_BLOCK_EXP_DATA after the IFFT.
RSH is the number of right shifts applied to restore correct
linear fractional scale.

Understanding this mechanism is important in order to
manage saturation in the WOLA filterbank coprocessor,
especially when applying gains higher than unity in the

frequency−domain. The following sections provide some
important guidelines, explanations and illustrations.

Saturation in the Frequency−Domain
Saturation of the 18−bit Register

The width of the block floating−point registers in the
WOLA filterbank coprocessor is 18 bits. At the end of one
pass, if a value has grown higher than this range, it is
saturated (where N_FFT is set to 2). This normally never
occurs, unless the user selects unreasonably high gains
during the WOLA gain application.

Using the Gain Exponent
The gains to be applied to each band (stored at

D_WOLA_GAIN_BASE) have 16−bit fractional format
and consequently represent values between –1 and 0.99997.
The gain exponent register (located at address
D_GAIN_EXP_DATA in X memory) is designed for the
case where the algorithm requires higher than unity gains
and operates by globally left−shifting the
frequency−domain data. The number of left shifts to apply
is specified in this register, whose format is 4 bits unsigned
(the maximum amplification factor is then
2^15−1 = 32767 = 90 dB). This is shown in Figure 3.

D_BLOCK_EXP_DATA D_BLOCK_EXP_DATA

Vector of Gains
Associated With

Each Band
D_GAIN_EXP_DATA

Frequency−Domain DataTime−Domain
Input

Time−Domain
Output

Global Data
Scaling

WOLA Gain Application

Figure 3. WOLA Filterbank Coprocessor Gain Application

In the last step of the WOLA gain application function, the
shift by D_GAIN_EXP_DATA is applied just after
multiplication of the frequency−domain data by the gain
vector. The shifted data is stored back into 18−bit memory
space. Care should be taken in gain application to avoid
saturation of this 18−bit memory space. Saturation can occur
with D_GAIN_EXP_DATA values greater than 2 and
proper care should be taken with input signals and higher
gain values. For example, in the case where the analysis
results reach 16−bit full−scale range in one particular band,
the value in D_GAIN_EXP_DATA should not be higher
than 2. Otherwise, assuming a unity gain vector, the datum
in this band would be saturated after gain application.

Multiple Gain Applications
To apply very high gains with the D_GAIN_EXP_DATA

several gain application stages can run in succession to avoid
saturation in the frequency−domain. The block
floating−point mechanism re−scales the data to the lower
16−bits of the 18−bit register before every new gain
application stage. Below is an example that illustrates how
the multiple gain application works.

To start, perform a first gain application, with
D_GAIN_EXP_DATA = 2, and then a second gain
application pass, with D_GAIN_EXP_DATA = 1. As an
initial state, it is assumed that data following analysis
occupy bits 0 to 16 in the 18 bit register (at least in one band)
and N_FFT = 1.

AND8384/D

http://onsemi.com
5

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇ

17 0

1. First Gain Application: As shown above, the
analysis results are read from bits 1 to 16 (because
N_FFT = 1) and multiplied by the WOLA band
gains (which are always lower than 1). As there is
no increase in range, N_FFT is set to 0 and the
result is put back in the 18−bit register in bits 0 to
15. The gain application is considered as a
processing pass. At the end of the pass, the
D_BLOCK_EXP_DATA register is updated
accordingly (in this case no increase is necessary).
N_FFT is always reset at the beginning of the
pass, just after data read.

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇ17 0

2. Application of D_GAIN_EXP_DATA = 2 at the
End of the First Gain Application: The data,
read from bits 0 to 15 (because N_FFT = 0) is
shifted by two bits on the left. N_FFT is set to 2
and D_BLOCK_EXP_DATA is incremented by 2.

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇ

17 0

3. Second Gain Application: The analysis results
are read from bits 2 to 17, as N_FFT is 2. They are
multiplied by the WOLA band gains (in this case,
the programmer may wish to set the gain vector to
unity, or the vector will be applied a second time),
and the result is put back in the lower part of the
18−bit register from bit 0 to 15, as there is no
increase in range. D_BLOCK_EXP_DATA is not
increased, and N_FFT is 0.

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇ

17 0

4. Application of D_GAIN_EXP_DATA = 1 at the
End of the Second Gain Application: The result
is shifted by one bit on the left. N_FFT is set to 1,
and D_BLOCK_EXP_DATA is further
incremented by 1.

ÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇ

17 0

Note: In the example, the application of the
D_GAIN_EXP_DATA is shown as a separate WOLA
filterbank coprocessor pass for educational purposes only.
In the processor, it is included in the same pass as the
multiplication with the gain vector, as the final step.
However, data is treated in the same way as illustrated.

Applying Gains by Manipulating the Block Exponent
Considering Equation 1 on page 6, it is clear that a global

system gain can be realized by manually increasing the
block exponent value (BLOCK_EXP). Manually increasing
the block exponent using the RCore would result in fewer
right shifts (RSH) when the WOLA filterbank coprocessor
re−maps the 18−bit range to 16 bits (this modification to
BLOCK_EXP can be done just before synthesis).
Consequently, a gain would be realized through a purposeful
miscalibration of the block floating−point process. Note that
this method represents a riskier alternative to using the gain
exponent register D_GAIN_EXP_DATA for applying a
global gain. As such, great care should be taken if doing this.
Remember that the value in the D_BLOCK_EXP_DATA
register must not become greater than 7 because the register
is 4−bit signed 2’s−complement. If this register increments
past 7, overflow occurs (not saturation) and a huge
attenuation would be applied to the signal. This method
should not be used when the number of bands (N) is high
because BLOCK_EXP naturally gets very close to 7 in these
cases.

Gain Redistribution
In some cases the best way to apply a high global gain

without saturation is to split it between the gain exponent
D_GAIN_EXP_DATA and the block exponent
D_BLOCK_EXP_DATA registers. When a high gain
exponent value is required (for example, in a dynamic range
compression operation), the value in
D_BLOCK_EXP_DATA can be considered as it appears
after analysis. A high gain exponent value could saturate the
data before synthesis, while a small value for BLOCK_EXP
would result in the previously saturated data being scaled
down to a low overall level. This is obviously a sub−optimal
gain distribution. As a consequence, gain redistribution is
sometimes a good practice. In such cases, the algorithm
would try and trade off values in D_GAIN_EXP_DATA and
D_BLOCK_EXP_DATA. Usually,
D_BLOCK_EXP_DATA rarely exceeds 3 after analysis
(this depends on the WOLA filterbank coprocessor
configuration, it can get up to 7 in extreme cases). As a
consequence, after analysis, the BLOCK_EXP could be
systematically set to 3, while compensating in the
D_GAIN_EXP_DATA register accordingly. For example, if
D_BLOCK_EXP_DATA = 1 after analysis in a given frame,
and if the specified overall system digital gain is 7, then the
algorithm would set BLOCK_EXP = 3 (that is 1+2), and
D_GAIN_EXP_DATA = 5 (that is 7−2). As mentioned
earlier, avoid increasing the block exponent beyond 7 during
synthesis. In addition, recall that the gain exponent should
also be monitored, so that it does not exceed 2 when the
frequency−domain data reaches full−scale, as this would
cause saturation.

The guidelines above show how to avoid or limit
saturation in the frequency domain. However, they do not

AND8384/D

http://onsemi.com
6

consider saturation in the time domain. In fact, they might
cause it. The following section explores considerations of
saturation in the time domain.

Saturation in the Time−Domain
Full−Scale Time−Domain Input Signals

Whenever the input time−domain data is 16−bit full−scale
(assuming unity gains in every bands, which corresponds to
a passthrough application), then the output signal in the
output FIFO will have same scale as the input (that is 16−bit
full range as well). Consequently, saturation is expected if
the gain exponent is used to apply gains greater than unity.
For example, setting the value in D_GAIN_EXP_DATA to
2 would amplify data by a factor of 4 in the
frequency−domain. There would be no saturation risks at
gain application, thanks to the 18−bit memory space.
However, the time−domain output data would then need 18
bits to be represented, which is not possible anyway, because
the output FIFO is only 16−bits wide. Consequently, the
signal would saturate during the re−mapping of 18− to
16−bit representations (just after IFFT). For most
applications, this should be avoided.

Use of the Gain Exponent
The use of the gain exponent should be reserved for the

amplification of low−level signals. Consider an input
time−domain signal represented with 13 bits in the current
input block. A value of 3 in D_GAIN_EXP_DATA could be
used in the frequency domain without risk of saturating the
time−domain signal in the output FIFO (13 + 3 = 16). Of
course, care should also be taken to avoid saturation in the
frequency domain. Whenever the frequency−domain data is
full−range in one band, then the value in
D_GAIN_EXP_DATA should not be higher than 2.

WDRC Example
Consider the example of a wide dynamic range

compressor (WDRC). In such an algorithm, a non−linear
compression characteristic is applied in order to amplify the
low−level signal components, while leaving the high−level
components unchanged (or slightly reduced in the case of
limiting). The characteristic is usually stored in a table
whose entries correspond to the signal energy level. In the
table, the associated amplification factors are listed, from
high gains (low signal energy) to low gains (high signal
energy). Using the WOLA filterbank coprocessor, such
gains would be applied during gain application, being taken
into account in the gain vector. Because of the fractional
numerical representation in the RCore, those gains would
range from 1 to very small values approaching 0. Since
low−level signals require amplification beyond the range of
the gain vector (0 to 1), a global gain (higher than 1) can be
designed together with the compression characteristics to
provide adequate gain in aggregate. In the WOLA filterbank
coprocessor, this global gain is easily applied using the gain
exponent register. The gain exponent can become very high,
depending on the compression characteristic.

Such a procedure should be performed with care to
prevent saturation when high gains are applied and for
keeping best precision when the gain vector values are low.
The amplification characteristics and the global gain value
should be designed to avoid saturation while maintaining
dynamic range and meeting the requirements of the signal
processing scheme. Effectively, band gains are maximized
in case of low input signals, and the gain exponent would be
increased as expected. The WDRC design should make sure
that data amplification does not produce saturation of the
18−bit band registers and that the output signal in time
(output FIFO) does not require more than 16 bits for a
complete representation. Conversely, the gain vector values
will be very low in case of high−level time−domain input
signal, while the gain exponent will be high, resulting in a
total gain close to 1. In this situation precision is
compromised (remember the gain vector is applied before
the gain exponent). The loss in SNR should not be critical
because the level of the signal is high, masking the noise.
However, better precision can be maintained by making the
process adaptive. Typically, when the input signal is high,
the low values in the gain vector could be increased to values
between 0.5 and 1. To compensate accordingly, the gain
exponent can be reduced in the opposite amount on a
frame−by−frame basis. This could significantly reduce the
risk of loss in numeric precision.

The Time−Domain Saturation Criterion
Consider again Equation 1 and re−mapping the 18−bit

representation into 16−bits, as performed when terminating
the block floating−point mechanism (see Figure 2). The
number of right shifts applied for restoring the original scale
is:

RSH � FFT_NORM � BLOCK_EXP (eq. 1)

In the (FFT + IFFT) process, the data range always grows
by a factor corresponding to the number of FFT points (that
is by FFT_NORM bits). Consequently, if a signal before the
FFT needs U bits for its representation (U <= 16), then the
signal after IFFT would need U + FFT_NORM bits. This
assumes no data modification between FFT and IFFT (no
manipulation of the gain or block exponent registers). The
WOLA block floating−point mechanism runs during the
FFT/IFFT operations, shifting the data to the right at every
pass that ends with the data in the upper 2 bits of the 18−bit
space, adding FFT_NORM − (16−U) right shifts in aggregate
to the D_BLOCK_EXP_DATA register. The subtraction by
16−U expresses the fact that no shift is required until the
scale of the data exceeds 16 bits. Consequently, the same
signal only needs U + FFT_NORM – (FFT_NORM − (16 −
U)) = 16 bits. This shows that the block floating−point
scheme prevents saturation during the FFT/IFFT process,
while continuously keeping the best precision, which is the
very purpose for which it was designed.

However, the correct scale must be restored by
Equation 1. After the IFFT, the WOLA filterbank

AND8384/D

http://onsemi.com
7

coprocessor performs right shifts (RSH) to rescale the data.
After this, the data will be represented with U’ = 16 – RSH
bits. Notice that only 16 bits (fixed−point) will be available
from here on for representing the re−scaled data, so U’
should not be more than 16 bits. We can derive the criterion
to avoid saturation as:

RSH � 0

(eq. 2)or similarly: BLOCK_EXP � FFT_NORM

This criterion can be checked at the end of the WOLA
synthesis operation, verifying whether saturation did occur
during the process and if so to what extent (how many bits).
The WOLA filterbank coprocessor configuration
determines FFT_NORM, while BLOCK_EXP can be read
in the D_BLOCK_EXP_DATA register after synthesis. This
information can be used to determine RSH.

Implications of Criterion (Equation 2)
The criterion is simple, but it has implications for the

application of gains greater than unity. Looking at
Equation 2, it becomes obvious that:

1. Manually increasing the block exponent can cause
saturation.

2. Applying a greater−than−zero value to the
D_GAIN_EXP_DATA register generally causes
D_BLOCK_EXP_DATA increase accordingly,
unless there are very small values in the gain
vector. This could make BLOCK_EXP grow to the
point of saturation where criterion (Equation 2) is
no longer satisfied. A good implementation will
fundamentally depend on a careful calibration and
understanding of the time−domain input signal
range.

Criterion (Equation 2) should be checked for any system
with higher−than−unity digital gain. Both gain
redistribution (in which the D_BLOCK_EXP_DATA is
manually increased), and methods mentioned previously
(running two subsequent gain application processes in order
to apply gain exponents higher than 2 without saturating the
18−bit registers in the frequency domain) can be used to try
and adhere to the criterion as necessary.

Saturation Caused by the Time−Folding Operation
Figure 2 shows that the windowing and time−folding

operations (performed as one pass before the FFT) can cause
the block floating−point mechanism to increase
D_BLOCK_EXP_DATA automatically. The amount of
potential increase depends on the time−domain input data
range, on the analysis window shape and on the particular
WOLA filterbank coprocessor configuration (specifically

the L/N ratio). This increase never requires more than 2 left
shifts with a usual analysis window. However, be aware that
if an increase of the block exponent happens at this time, (for
instance, FOLDING_SHIFTS = 1 or 2 bits before starting
the FFT processes), then criterion (Equation 2) will not be
satisfied unless the gain vector is less than unity, thereby
reducing the data scale. If unity gains are used, then
saturation will occur at re−mapping time. In this case, the
range of data before FFT would be 16 bits (otherwise no
increase of the block exponent would be required during
time−folding) and the block exponent will increase by
FFT_NORM bits during FFT/IFFT. The final value of the
block exponent after synthesis will be BLOCK_EXP =
FFT_NORM + FOLDING_SHIFTS, RSH will be negative,
and this will cause saturation.

Saturation in the Overlap−Add Operation
Figure 2 also shows that saturation can occur in the 16−bit

fixed−point overlap−add operation. Data range may need to
be more than 16−bits wide to prevent overflow because of
the addition operations in the overlap−add. Increasing the
ratio OS/DF has direct influences on data scales in the
overlap−add process. Typical synthesis window shapes
make saturation rare, however high OS/DF ratios can cause
saturation in theory.

CONCLUSION

To summarize the main points:
1. The gain exponent was designed to apply gains to

low−level signals. It should never be used if the
time−domain input signal uses the full 16−bit
range (assuming unity gains in the bands).
Saturation can occur after the synthesis operation
in the time domain if high gains are applied to
full−scale signals. The block−floating point
mechanism does not solve for this, because the
output data range is only 16−bit (as is the input).

2. D_GAIN_EXP_DATA values higher than 2 (gain
> 4) should never be used when the
frequency−domain data occupies the full 16−bit
range. This would cause saturation to the
frequency−domain data (just after gain
application) because the memory space is only 18
bits wide and is not sufficient to hold larger values.

3. After the WOLA synthesis operation is completed,
the user can check criterion (2). If it is not
satisfied, then saturation has occurred. Conversely,
if this criterion is satisfied, there is no guarantee
that saturation has not occurred. The condition is
not totally sufficient, as it is possible to have
undetected saturation from the overlap−add
operation.

AND8384/D

http://onsemi.com
8

Block Floating−Point in Stereo Modes
The WOLA filterbank coprocessor can be configured to

process in monaural or in stereo mode (simple stereo or full
stereo). In stereo modes both channels are processed
together as the real and the imaginary part of the same
complex FFT / IFFT. Consequently, all the block
floating−point and gain registers are common to both
channels. The gain exponent register is also the same for
both channels. This has the following implications:

1. The block exponent register will behave according
to the values in the channel with the highest level.
Scaling factors (right shifts) will be applied
similarly to both channels. Consequently, precision
in the lower channel will be affected − a reduction
in performance may occur in a channel that has a
level significantly lower than in the other one.

2. Any use of the gain exponent
(D_GAIN_EXP_DATA) on one channel will force
the same global shift on the other channel;
therefore, gain application in stereo system

requires special care. For example, a compression
algorithm running on channel 0 would update the
gain exponent according to the energy of its input
signal similar to the WDRC sample code). If a
simple passthrough (or noise reduction) algorithm
were running on channel 1, the same gain
exponent would also be applied here causing
unwanted modulation. The output of channel 1
would be modulated by the energy of the signal in
channel 0. In this case, variations of the gain
exponent should be compensated on channel 1 by
applying shifts to modify the gain vector in the
opposite way. This is a typical situation when
processing a transmit and a receive channel
simultaneously, as in a telecom application. In
most cases, the input signal on channel 0 (typically
speech from the near end) can be very different
from the signal on channel 1 (typically silence, or
noise from the far end).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81−3−5773−3850

AND8384/D

Toccata Plus is a trademark of Semiconductor Components Industries, LLC (SCILLC).
BelaSigna and Orela are registered trademarks of Semiconductor Components Industries, LLC (SCILLC).

LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

